Principles of Clinical Pharmacology

Juan J.L. Lertora, M.D., Ph.D.
Director
Clinical Pharmacology Program

Office of Clinical Research Training and Medical Education National Institutes of Health Clinical Center September 3, 2009

Principles of Clinical Pharmacology Remote Sites 2009 - 2010

Cincinnati's Children's Hospital Medical Center
Duke University Medical Center, Durham
University of California, Los Angeles
Harbor-UCLA Medical Center, Los Angeles
Hoffman-La Roche, Inc., Nutley, NJ
Indiana University-Purdue University,
Indianapolis
Howard University, Washington DC

Principles of Clinical Pharmacology Remote Sites 2009-2010

Case Western Reserve University, Cleveland, OH Johnson & Johnson, Titusville, NJ Johnson & Johnson, San Diego, CA Johnson & Johnson, Wayne, PA University of Pennsylvania, Philadelphia, PA Walter Reed Army Institute of Research and USUHS, Silver Spring, Maryland

Principles of Clinical Pharmacology International Remote Sites 2009-2010

Dong-A Medical College
Busan, South Korea
Inha University Hospital
Incheon, South Korea
Instituto Nacional de Enfermedades
Neoplasicas (INEN), Lima, Peru
Hospital Nacional Arzobispo Loayza,
Lima, Peru

Principles of Clinical Pharmacology

Remote Sites 2009-2010

NCI - Frederick, Maryland NIA - Baltimore, Maryland NIDA - Baltimore, Maryland

COURSE MODULES

MODULE 1: Pharmacokinetics

MODULE 2: Drug metabolism and Transport

MODULE 3: Assessment of Drug Effects

MODULE 4: Optimizing and Evaluating Therapy

MODULE 5: Drug Discovery and Development

PHARMACOLOGY

The study of *drugs* and *biologics* and their actions in *living organisms*

Drugs: "small molecules", chemicals

Biologics: "large molecules", peptides, antibodies

CLINICAL PHARMACOLOGY

THE STUDY OF DRUGS IN HUMANS

CAREER GOALS OF CLINICAL PHARMACOLOGISTS

- Optimize understanding and use of existing medicines
- Discover, develop and evaluate new medicines
- Define the basis for variability in therapeutic and toxic responses to medicines

COURSE FOCUS

- Scientific basis of drug use, development and evaluation
- Not Therapeutics
- Emphasis is on *General Principles* for both "old" and "new" drugs

"Introduction" Lecture Outline

- Historical overview
- The problem of adverse drug reactions (ADRs)
- Drug discovery and development
- Variability in drug responses
- Introduction to pharmacokinetics
- The concept of clearance

-	
-	

Historical Overview

The establishment of *experimental* pharmacology as a discipline in Europe and the USA in the 19th and 20th centuries.

LACK OF IMPORTANCE ATTACHED TO DRUG THERAPY

"Fortunately a surgeon who uses the wrong side of the scalpel cuts his own fingers and not the patient; if the same applied to drugs they would have been investigated very carefully a long time ago."

Placing emphasis on therapeutic technique and rational prescribing

Rudolph Bucheim Beitrage zur Arzneimittellehre, 1849

FOUNDERS OF AMERICAN CLINICAL PHARMACOLOGY HARRY GOLD WALTER MODELL

Partial List of GOLD and MODELL Accomplishments

1937 – Introduced Double-Blind Clinical Trial Design *

1939 - Initiated Cornell Conference on Therapy

1953 – Analized Digoxin Effect Kinetics to Estimate Absolute Bioavailability as well as Time-Course of Chronotropic

1960 - Founded Clinical Pharmacology and Therapeutics

- * Gold H, Kwit NT, Otto H. JAMA 1937;108:2173-2179. † Gold H, Cattell McK, Greiner T, Hanlon LW, Kwit NT, Modell W, Cotlove E, Benton J, Otto HL. J Pharmacol Exp Ther 1953:109;45-57.

LINEAGE of Modern **Clinical Pharmacology** PATER FAMILIAS RUDOLPH BUCHEIM FOUNDING FATHERS US EUROPE HARRY GOLD PAUL MARTINI WALTER MODELL

Drug Toxicity Adverse Drug Reactions

- · We need to develop drugs that are both effective and safe for use in patients.
- While some toxicities can be managed and may be acceptable (risk/benefit ratio) others are by their nature and severity unacceptable.
- Covered in Modules 2 and 4 in our course.

SERIOUS ADR

A SERIOUS ADVERSE DRUG REACTION is an adverse drug reaction (ADR) that requires or prolongs hospitalization, is permanently disabling or results in death.

THALIDOMIDE

Drug Exposure "in utero"

• The problem of "Drug Therapy in Pregnant and **Nursing Women**" Covered in *Module 4* in our course.

Thalidomide: Therapeutic Uses

- Erythema Nodosum Leprosum
- Multiple Myeloma

These are *FDA-approved* indications (immunomodulatory agent)

Marketing done under a special restricted distribution program:

System for Thalidomide Education and Prescribing Safety (S.T.E.P.S.)

Used with *extreme caution* in females of childbearing potential. Contraceptive measures are mandatory.

A recent example - Cytokine Storm (1)

"Six healthy young male volunteers at a contract research organization were enrolled in the *first phase I clinical trial of TGN1412*, a novel superagonist anti-CD28 monoclonal antibody that directly stimulates T cells.

N Engl J Med 2006;355:1018-1028

A recent example - Cytokine Storm (2) Within 90 minutes after receiving a single intravenous dose...all six volunteers had a systemic inflammatory response...rapid induction of proinflammatory cytokines...headache, myalgias, nausea, diarrhea, erythema, vasodilatation, and hypotension. Within 12 to 16 hours they became critically ill... All six patients survived." N Engl J Med 2006;355:1018-1028 A recent example – Cytokine storm (3) Preclinical models did not predict the risk of this reaction! Problem of simultaneous dosing in 6 volunteers (first-in-human dosing) The NEW ENGLAND JOURNAL of MEDICINE BRIEF REPORT Cytokine Storm in a Phase 1 Trial of the Anti-CD28 Monoclonal Antibody TGN1412 Ganesh Suntharalingam, F.R.C.A., Meghan R. Perry, M.R.C.P., Stephen Ward, F.R.C.A., Stephen J. Brett, M.D., Andrew Castello-Cortes, F.R.C.A., Michael D. Brunner, F.R.C.A., and Nicki Panoskaltsis, M.D., Ph.D. N Engl J Med 2006;355:1018-28

CONSEQUENCES OF THALIDOMIDE CRISIS

- New FDA Regulations (KEFAUVER-HARRIS 1962 AMENDMENTS)
- Institute of Medicine-National Academy of Sciences review of Therapeutic Claims
- More Research on Causes of ADRs
- NIGMS created Clinical Pharmacology Centers in the USA

LINEAGE OF Modern Clinical Pharmacology PATER FAMILIAS RUDOLPH BUCHEIM FOUNDING FATHERS US EUROPE HARRY GOLD PAUL MARTINI WALTER MODELL RENAISSANCE LEADERS KEN MELMON LEON GOLDBERG **EUROPE** JOHN OATES FOLKE SJŐQVIST DAN AZARNOFF LOU LASAGNA COLLIN DOLLERY

FACTORS CONTRIBUTING TO ADR'S

- 1. Inappropriate *polypharmacy* resulting in adverse *drug interactions*
- 2. Lack of clear therapeutic goals
- 3. Failure to attribute new symptoms or abnormal laboratory test results to drugs prescribed
- 4. Low priority given to studying ADR's
- 5. Insufficient knowledge of pharmacology

ADVERSE DRUG REACTIONS WHO: Any untoward reaction to a drug CONTEMPORARY VIEW: Unpredictable Adverse Drug Events

CHARACTERISTICS OF MOST ADRs* MOST <u>NOT</u> CAUSED BY NEW DRUGS MOST <u>NOT</u> IDIOSYNCRATIC REACTIONS ~80% <u>ARE</u> RELATED TO DRUG DOSE *Melmon KL. N Engl J Med 1971;284:1361-8.

"Target concentration" strategy

- Based on observed individual variation in drug exposure (AUC) when "standard" doses are prescribed.
- Attempts to "individualize" therapy when therapeutic and toxic ranges of drug concentrations in plasma have been established.

NONCANCER DRUGS CAUSING ADR'S* PHENYTOIN** CARBAMAZEPINE** **PREDNISONE CODEINE DIGOXIN**** LITHIUM** **AMIODARONE** THEOPHYLLINE** ASPIRIN** **DESIPRAMINE** CO-TRIMOXAZOLE DEXAMETHASONE** PENTAMIDINE **GENTAMICIN**** 1988 NMH Data (Clin Pharmacol Ther 1996;60:363-7) DRUGS FOR WHICH PLASMA LEVELS ARE AVAILABLE

INCIDENCE OF ADRS* IN HOSPITALIZED PATIENTS All severities 10.9 % Serious 2.1 % Fatal 0.2 % AS CAUSE OF HOSPITAL ADMISSION Serious 4.7 % Fatal 0.13 % * Lazarou J, et al. JAMA 1998;279:1200-05.

ATTENTION FOCUSED ON MEDICAL ERRORS

"TO ERR IS HUMAN: BUILDING A SAFER HEALTH SYSTEM"

Committee on Quality of Health Care in America Institute of Medicine

www.nap.edu/reading room (2000).

Development and Evaluation of New Drugs

- Drug discovery
- Pre-clinical and clinical evaluation
- Subjects of *Module 5* in our course

MEDICINES "DISCOVERED" BY CLINICAL INVESTIGATORS NEW INDICATION: ALLOPURINOL (Gout) - RW Rundles ENDOGENOUS COMPOUND: DOPAMINE (Shock) - LI Goldberg DRUG METABOLITE: FEXOFENADINE (Antihistamine) RL Woosley at al.

	MEDICINES "DISCOVERED" BY CLINICAL INVESTIGATORS
NEW	INDICATION:
	LLOPURINOL (Gout) - RW Rundles
<u>END (</u>	OGENOUS COMPOUND:
DO	OPAMINE (Shock) - LI Goldberg
DRUC	<u>GMETABOLITE</u> :
FF	EXOFENADINE (Antihistamine) -
	RL Woosley et al.

MEDICINES "DISCOVERED" BY CLINICAL INVESTIGATORS NEW INDICATION: ALLOPURINOL (Gout) - RW Rundles ENDOGENOUS COMPOUND: DOPAMINE (Shock) - LI Goldberg DRUG METABOLITE: FEXOFENADINE (Antihistamine) RL Woosley et al.

Variability in Drug Response

- Pharmacokinetic (PK) basis
- Pharmacodynamic (PD) basis

Both PK and PD variability may be due to *genetic* and/or *environmental* factors

Interindividual Variation in Drug Exposure (AUC) Karim A et al, 2007 Flogitazone Flogitazone

Cytochrome P450 2D6

- Absent in 7% of Caucasians
- Hyperactive in up to 30% of East Africans
- Catalyzes primary metabolism of:
 - propafenone
 - codeine
 - β-blockers
 - tricyclic antidepressants
 - tamoxifene
 - Inhibited by: quinidine, paroxetine, sertraline, venlafaxine

Genetics and Severe Drug Toxicity HLA-B*5701 Abacavir hypersensitivity Flucoxacillin liver injury (DILI) HLA-B*1502 Carbamazepine-induced Stevens-Johnson syndrome

Introduction to Pharmacokinetics • This will be the subject of Module 1 in our course. • Essential for integration of material in subsequent course modules. **PHARMACOKINETICS** The QUANTITATIVE ANALYSIS of the TIME COURSE of DRUG ABSORPTION, **DISTRIBUTION**, **METABOLISM**, and **EXCRETION PHARMACOKINETICS**

Because it is *quantitative*, pharmacokinetics is of necessity *mathematical*

DRUG DOSE SELECTION TRADITIONAL: Look up "usual" dose in PDR Memorize "usual" dose IMPROVED:

Individualize dosing

Apply pharmacokinetics and the "target concentration strategy"

Introduction to Clearance

- Clearance is a "primary" parameter in the pharmacokinetic analysis of drug distribution and elimination.
- Understanding the concept of clearance is essential for drug evaluation and use in clinical medicine.

CREATININE CLEARANCE EQUATION

$$CL_{Cr} = \frac{U \times V}{P}$$

U = **URINE CONCENTRATION**

V = URINE VOLUME / TIME

P = PLASMA CONCENTRATION

CREATININE CLEARANCE REVISITED RATEOF APPEARANCE OF Cr IN URINE (dE/dt): $dE/dt = CL_{Cr} \times P$ RATE OF CHANGE OF Cr IN BODY (dX/dt): $dX/dt = -CL_{Cr} \times P$ AT STEADY STATE: $P = I/CL_{Cr}$ I = RATE OF CREATININE SYNTHESIS

STEADY STATE CONCENTRATION				
<u>CONTINUOUS CREATININE SYNTHESIS</u> :				
	C ss	=	I CL Cr	
CONTINUOUS DRUG INFUSION:				
	C ss	=	$\frac{I}{CL_E}$	

СОСКО	CROFT & GAULT EQUATION
CL _{Cr} = -	(140 - age) (weight in kg) 72 (serum Cr in mg/dL) reduce estimate by 15% for women
* Cockroft	DW, Gault MH: Nephron 1976;16:31-41.

COCKCROFT & GAULT EQUATION

$$CL_{Cr} = \frac{I}{P}$$

72 (serum Cr in mg/dL)

[reduce estimate by 15% for women]

Terms in red estimate creatinine synthesis rate.

RENAL FUNCTION IN PATIENTS TOXIC FROM DIGOXIN*

SERUM Cr (mg %)	Cl_{Cr} (m ≥ 50	L/min) < 50	
≤1.7	4	19	52%
> 1.7	0	21	48%

 $\mbox{*}$ From Piergies AA, et al. Clin Pharmacol Ther 1994;55:353-8.

ESTIMATED Cl_{Cr}

- ESSENTIAL for safe and effective use of renally eliminated drugs
- Important *PREREQUISITE* for application of pharmacokinetic principles
- Need to automate *BUT*:
 - Laboratory system often does not "talk" with patient database
 - Patients often not weighed

